If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-42=28
We move all terms to the left:
j^2-42-(28)=0
We add all the numbers together, and all the variables
j^2-70=0
a = 1; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·1·(-70)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*1}=\frac{0-2\sqrt{70}}{2} =-\frac{2\sqrt{70}}{2} =-\sqrt{70} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*1}=\frac{0+2\sqrt{70}}{2} =\frac{2\sqrt{70}}{2} =\sqrt{70} $
| 4x+3=−11 | | x+45=180,x=225 | | 4^x-1=8^2x | | -0.5(-2x+8)+-8=8 | | x-45=180,x=225 | | 18=2(5-x) | | 9(p=3 | | 4x+2+3x-1=128 | | 4/14=m/49 | | 17-8(x-4)=32 | | 7t+14=63 | | c–(-9)=23 | | 2(x+5=20 | | 7s=434 | | 13+6=3+11s | | (4x-6)+(8x+18)=180 | | (2x=27)= | | 17-8(x-4)=33 | | p-4=-9=2p | | |5y-6|=|6-5y| | | –19−9k=11−3k | | 3x+4=2(2x+3) | | 8=n-25/6 | | y-22=43 | | n−33=19 | | x÷5=21 | | 10=35t | | -8(m+5)=-96 | | 2x-4(x-2)=-3+5x-3 | | 2x+4=6x–12 | | x+(-17)=25 x+(-17)=25 | | 18=3z |